

Does the 99th Percentile cTn Value Mean Anything to the Clinician?

M. Odette Gore, MD, MSCS

University of Colorado Denver School of Medicine Denver Health and Hospital Authority Colorado Prevention Center

DISCLOSURES: • No relationships with industry, financial or otherwise

• Grant support: NIH/NHLBI K23; Doris Duke Charitable Foundation; Denver Health and Hospital Authority

Timeline of MI definitions and use of biomarkers

Adapted from Thygesen *et al. J Am Coll Cardiol.* 2018 Oct 30;72(18):2231-2264 and Garg *et al. Intern Emerg Med.* 2017; 12(2): 147–155.

Fourth Universal Definition of MI

- Myocardial injury: Cardiac troponin (cTn) > 99th percentile
- Acute myocardial injury: Serial measurements detecting a rise or fall in cTn, with at least one value > 99th percentile
- MI: Acute myocardial injury + at least one other clinical, ECG or imaging criterion consistent with ischemic injury.

Fourth Universal Definition of MI

- Myocardial injury: Cardiac troponin (cTn) > 99th percentile
- Acute myocardial injury: Serial measurements detecting a rise or fall in cTn, with at least one value > 99th percentile
- MI: Acute myocardial injury + at least one other clinical, ECG or imaging criterion consistent with ischemic injury.

Time

Diagnostic performance

Data from 786 consecutive patients who presented to the ER with symptoms suggestive of MI with onset <12 hrs

	Standard cTnT (LoQ 35 ng/L)	hs-cTnT (99 th percentile 14 ng/L)
Sensitivity	72	95
Specificity	97	80
Positive predictive value	85	50
Negative predictive value	94	99

How is the 99th percentile hs-cTn defined?

- "No expert opinion or consensus about specific criteria for how the 99th percentile [...] should be defined."
- 99th percentiles in current use were determined in "normal reference populations", but no consensus about criteria to define normal reference populations, or about statistical methods

How was the 99th percentile for hs-cTnT derived?

- **2010** Study of 616 apparently healthy volunteers and blood donors (mean age 44), with little information about subject selection and inclusion/exclusion criteria.
- **2011** Study of 533 apparently healthy individuals (mean age 37) selected based on a standardized questionnaire.

How was the 99th percentile for hs-cTnT derived?

- **2010** Study of 616 apparently healthy volunteers and blood donors (mean age 44), with little information about subject selection and inclusion/exclusion criteria.
- **2011** Study of 533 apparently healthy individuals (mean age 37) selected based on a standardized questionnaire.
- 2012 Recommendation of the IFCC Task Force on Clinical Applications of Cardiac Biomarkers: Normal reference populations for the determination of the 99th percentile value of cardiac troponin should be selected by detailed physician evaluation, including ECG, echo and NT-proBNP, and should include both younger and older subjects.

Age- and sex-dependent 99th percentiles for hs-cTnT

Journal of the American College of Cardiology © 2014 by the American College of Cardiology Foundation Published by Elsevier Inc. Vol. 63, No. 14, 2014 ISSN 0735-1097/\$36.00 http://dx.doi.org/10.1016/j.jacc.2013.12.032

Biomarkers

Age- and Sex-Dependent Upper Reference Limits for the High-Sensitivity Cardiac Troponin T Assay

M. Odette Gore, MD, MSCS,* Stephen L. Seliger, MD, MS,† Christopher R. deFilippi, MD,† Vijay Nambi, MD, PHD,‡§ Robert H. Christenson, PHD,|| Ibrahim A. Hashim, PHD,¶ Ron C. Hoogeveen, PHD,‡ Colby R. Ayers, MS,*# Wensheng Sun, MS,‡ Darren K. McGuire, MD, MHSC,* ** Christie M. Ballantyne, MD,‡ James A. de Lemos, MD* ** Dallas and Houston, Texas; and Baltimore, Maryland

Gore et al. J Am Coll Cardiol. 2014 Apr 15;63(14):1441-8.

Three large, well characterized, population-based cohorts

Study	Participants with measured hs-cTnT
Dallas Heart Study (DHS)	N = 3,546
	Age 18 - 65
	Dallas County
Atherosclerosis Risk in	N = 9,698
Communities (ARIC)	Age 45 - 64
Study	4 counties in North Carolina, Minnesota, Mississippi and Maryland
Cardiovascular Health Study (CHS)	N = 4,221
	Age ≥ 65
	4 counties in North Carolina, Maryland, Pennsylvania and California

Three large, well characterized, population-based cohorts

Study	Participants with measured hs-cTnT
Dallas Heart Study (DHS)	N = 3,546
	Age 18 - 65
	Dallas County
Atherosclerosis Risk in	N = 9,698
Communities (ARIC)	Age 45 - 64
Study	4 counties in North Carolina, Minnesota, Mississippi and Maryland
Cardiovascular Health Study (CHS)	N = 4,221
	Age ≥ 65
	4 counties in North Carolina, Maryland, Pennsylvania and California

Advantages vs. the studies used to derive the 14 ng/L 99th percentile for hs-cTnT:

- Detailed characterization (in excess of IFCC recommendations)
- Large number of participants
- Diverse races/ethnicities and wide age range

Definition of the healthy reference population (Subcohort 2)

Participants in DHS, ARIC & CHS, excluding:

- recent hospitalization (past 6 months)
- stage III or greater CKD (eGFR < 60 cc/min).
- clinical CVD (CHD, CHF, atrial fibrillation, prior stroke)
- subclinical CVD (LVH or LVEF < 55% by echo, LVH by ECG, NT-proBNP > 450 ng/L).

Age- and sex-dependent 99th percentiles for hs-cTnT

Gore *et al. J Am Coll Cardiol.* 2014 Apr 15;63(14):1441-8.

Age- and sex-dependent 99th percentiles for hs-cTnT

Gore *et al. J Am Coll Cardiol.* 2014 Apr 15;63(14):1441-8.

• Dependence on sex: 4th UDMI now recommends sex-specific 99th percentiles.

- Dependence on sex: 4th UDMI now recommends sex-specific 99th percentiles.
- Dependence on age, and possibly race.

- Dependence on sex: 4th UDMI now recommends sex-specific 99th percentiles.
- Dependence on age, and possibly race.
- Increased detection of non-MI troponin elevations: chronic CAD, LVH/LVSD, blunt force injury (including CPR), CKD, HF, pulmonary embolism, sepsis, etc.

- Dependence on sex: 4th UDMI now recommends sex-specific 99th percentiles.
- Dependence on age, and possibly race.
- Increased detection of non-MI troponin elevations: chronic CAD, LVH/LVSD, blunt force injury (including CPR), CKD, HF, pulmonary embolism, sepsis, etc.
- Diagnostic performance: High sensitivity at the expense of low specificity, low PPV.

- Dependence on sex: 4th UDMI now recommends sex-specific 99th percentiles.
- Dependence on age, and possibly race.
- Increased detection of non-MI troponin elevations: chronic CAD, LVH/LVSD, blunt force injury (including CPR), CKD, HF, pulmonary embolism, sepsis, etc.
- Diagnostic performance: High sensitivity at the expense of low specificity, low PPV.
- Variability between different assays, primarily because of lack of consensus about criteria for deriving 99th percentiles.

AACC Universal Sample Bank: 99th percentiles for 12 hs-cTn assays

Modified from Apple et al. Clin Chem. in press (published online on 1/27/2020)

Implications for clinicians

- Avoid use of manufacturer-provided 99th percentile values to interpret hs-cTn qualitatively as normal vs. abnormal.
- Do not diagnose ACS based on a single hs-cTn > 99th percentile, in the absence of appropriate clinical context.
- Understand that hs-cTn > 99th percentile will have a higher sensitivity for non-MI troponin elevations compared with previous troponin assays.

Potential solutions for the future

- De-emphasize the use of 99th percentiles in clinical decision-making.
- More emphasis on serial change for MI rule-in (but no consensus on what constitutes a significant change).
- Benefit from the lower LoQ of hs-cTn assays in other ways (e.g. rapid MI rule-out).